A2M: An Amplification-Arbitrary Module for Remote Sensing Image Super-ResolutionDownload PDFOpen Website

Published: 01 Jan 2023, Last Modified: 17 Nov 2023IEEE Geosci. Remote. Sens. Lett. 2023Readers: Everyone
Abstract: Remote sensing (RS) image super-resolution (SR) aims to recover high-resolution (HR) images from the corresponding low-resolution (LR) images. In recent years, the SR methods based on convolutional neural networks (CNNs) have achieved incredible performance in case of fixed scale factors (e.g., <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\times 2$ </tex-math></inline-formula> , <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\times 3$ </tex-math></inline-formula> , and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\times 4$ </tex-math></inline-formula> ). However, these methods need to train a single model for each scale factor and fail to directly reconstruct the HR image of decimal factors. To solve the lack of research on arbitrary scale of RS image SR, we propose a novel amplification module called the amplification-arbitrary module (A <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> M). A <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> M can be easily embedded in the tail of the previous SR networks, so that the previous networks can also achieve end-to-end arbitrary scale SR. Specifically, we first use the combination of convolutional and pixelshuffle layers to zoom in the deep feature matrix <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$2\times $ </tex-math></inline-formula> , <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$3\times $ </tex-math></inline-formula> , and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$4\times $ </tex-math></inline-formula> along the spatial dimension. Information cross transmission (ICT) is then used to gather information of multiple spatial sizes. ICT is not only beneficial to enrich the diversity of information but also can avoid training only a single branch in the training stage. To make better use of multiscale features, we designed an efficient signal weighting unit (SWU) to generate a correlation matrix at a small cost, and then the signals of multiscale features at the same position are fused according to the correlation matrix. Experimental results on the RS and generic datasets demonstrate that our method with single pretraining model can perform well at any scale factors.
0 Replies

Loading