Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Ethereum, X, GNN
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: While numerous public blockchain datasets are available, their utility is constrained by an exclusive focus on blockchain data. This constraint limits the incorporation of relevant social network data into blockchain analysis, thereby diminishing the breadth and depth of insight that can be derived. To address the above limitation, we introduce EX-Graph, a novel dataset that authentically links Ethereum and X, marking the first and largest dataset of its kind. EX-Graph combines Ethereum transaction records (2 million nodes and 30 million edges) and X following data (1 million nodes and 3 million edges), bonding 30,667 Ethereum addresses with verified X accounts sourced from OpenSea. Detailed statistical analysis on EX- Graph highlights the structural differences between X-matched and non-X-matched Ethereum addresses. Extensive experiments, including Ethereum link prediction, wash-trading Ethereum addresses detection, and X-Ethereum matching link pre- diction, emphasize the significant role of X data in enhancing Ethereum analysis. EX-Graph is available at https://exgraph.deno.dev/.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: pdf
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: datasets and benchmarks
Submission Number: 1617
Loading