Auxiliary Losses for Learning Generalizable Concept-based Models

Published: 21 Sept 2023, Last Modified: 02 Nov 2023NeurIPS 2023 posterEveryoneRevisionsBibTeX
Keywords: Interpretability, concept bottleneck models, explainability
TL;DR: Propose multi-task learning and orthogonal loss for concept bottleneck models
Abstract: The increasing use of neural networks in various applications has lead to increasing apprehensions, underscoring the necessity to understand their operations beyond mere final predictions. As a solution to enhance model transparency, Concept Bottleneck Models (CBMs) have gained popularity since their introduction. CBMs essentially limit the latent space of a model to human-understandable high-level concepts. While beneficial, CBMs have been reported to often learn irrelevant concept representations that consecutively damage model performance. To overcome the performance trade-off, we propose a cooperative-Concept Bottleneck Model (coop-CBM). The concept representation of our model is particularly meaningful when fine-grained concept labels are absent. Furthermore, we introduce the concept orthogonal loss (COL) to encourage the separation between the concept representations and to reduce the intra-concept distance. This paper presents extensive experiments on real-world datasets for image classification tasks, namely CUB, AwA2, CelebA and TIL. We also study the performance of coop-CBM models under various distributional shift settings. We show that our proposed method achieves higher accuracy in all distributional shift settings even compared to the black-box models with the highest concept accuracy.
Submission Number: 12764
Loading