Root Cause Analysis of Anomalies in Multivariate Time Series through Granger Causal Discovery

Published: 22 Jan 2025, Last Modified: 19 Mar 2025ICLR 2025 OralEveryoneRevisionsBibTeXCC BY 4.0
Keywords: root cause analysis, Granger causality, multivariate time series
Abstract: Identifying the root causes of anomalies in multivariate time series is challenging due to the complex dependencies among the series. In this paper, we propose a comprehensive approach called AERCA that inherently integrates Granger causal discovery with root cause analysis. By defining anomalies as interventions on the exogenous variables of time series, AERCA not only learns the Granger causality among time series but also explicitly models the distributions of exogenous variables under normal conditions. AERCA then identifies the root causes of anomalies by highlighting exogenous variables that significantly deviate from their normal states. Experiments on multiple synthetic and real-world datasets demonstrate that AERCA can accurately capture the causal relationships among time series and effectively identify the root causes of anomalies.
Primary Area: interpretability and explainable AI
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4815
Loading