Keywords: Diffusion models, Schrödinger bridge, Distribution matching, Semi-Supervised Learning
TL;DR: We introduce Feedback Schrödinger Bridge Matching, a novel semi-supervised framework that uses pre-aligned pairs to guide the matching of non-coupled samples.
Abstract: Recent advancements in diffusion bridges for distribution transport problems have heavily relied on matching frameworks, yet existing methods often face a trade-off between scalability and access to optimal pairings during training.
Fully unsupervised methods make minimal assumptions but incur high computational costs, limiting their practicality. On the other hand, imposing full supervision of the matching process with optimal pairings improves scalability, however, it can be infeasible in most applications.
To strike a balance between scalability and minimal supervision, we introduce Feedback Schrödinger Bridge Matching (FSBM), a novel semi-supervised matching framework that incorporates a small portion ($<8$% of the entire dataset) of pre-aligned pairs as state feedback to guide the transport map of non-coupled samples, thereby significantly improving efficiency. This is achieved by formulating a static Entropic Optimal Transport (EOT) problem with an additional term capturing the semi-supervised guidance. The generalized EOT objective is then recast into a dynamic formulation to leverage the scalability of matching frameworks. Extensive experiments demonstrate that FSBM accelerates training and enhances generalization by leveraging coupled pairs' guidance, opening new avenues for training matching frameworks with partially aligned datasets.
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8128
Loading