Predictive Uncertainty Quantification for Bird's Eye View Segmentation: A Benchmark and Novel Loss Function
Keywords: Uncertainty Quantification, Evidential Deep Learning, Bird's Eye View (BEV) Segmentation
Abstract: The fusion of raw sensor data to create a Bird's Eye View (BEV) representation is critical for autonomous vehicle planning and control. Despite the growing interest in using deep learning models for BEV semantic segmentation, anticipating segmentation errors and enhancing the explainability of these models remain underexplored. This paper introduces a comprehensive benchmark for predictive uncertainty quantification in BEV segmentation, evaluating multiple uncertainty quantification methods across three popular datasets with three representative network architectures. Our study focuses on the effectiveness of quantified uncertainty in detecting misclassified and out-of-distribution (OOD) pixels while also improving model calibration. Through empirical analysis, we uncover challenges in existing uncertainty quantification methods and demonstrate the potential of evidential deep learning techniques, which capture both aleatoric and epistemic uncertainty. To address these challenges, we propose a novel loss function, Uncertainty-Focal-Cross-Entropy (UFCE), specifically designed for highly imbalanced data, along with a simple uncertainty-scaling regularization term that improves both uncertainty quantification and model calibration for BEV segmentation.
Primary Area: datasets and benchmarks
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 13279
Loading