Self-Aware Reinforcement Learning for Improving LLMs with Minimal Data

ICLR 2026 Conference Submission14713 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Large Language Model, Reinforcement Learning, Self-improving, Self-evolution
Abstract: Reinforcement learning (RL) has demonstrated potential in enhancing the reasoning capabilities of large language models (LLMs), but such training typically demands substantial efforts in creating and annotating data. In this work, we explore improving LLMs through RL with minimal data. Our approach alternates between the LLM proposing a task and then attempting to solve it. To minimize data dependency, we introduce two novel mechanisms grounded in self-awareness: (1) self-aware difficulty prediction, where the model learns to assess task difficulty relative to its own abilities and prioritize challenging yet solvable tasks, and (2) self-aware limit breaking, where the model recognizes when a task is beyond its capability boundary and proactively requests external data to break through that limit. Extensive experiments on nine benchmarks showing a 53.8% relative improvement with less than 1.2% extra data demonstrate the efficacy of self-aware RL and underscore the promise of self-evolving agent training. Our code is available at https://anonymous.4open.science/r/SARL-B7FE/.
Primary Area: foundation or frontier models, including LLMs
Submission Number: 14713
Loading