Keywords: Dynamic Manipulation, Diffusion Policy
Abstract: Diffusion-based policies have achieved remarkable results in robotic manipulation but often struggle to adapt rapidly in dynamic scenarios, leading to delayed responses or task failures. We present DCDP, a Dynamic Closed-Loop Diffusion Policy framework that integrates chunk-based action generation with real-time correction. DCDP integrates a self-supervised dynamic feature encoder, cross-attention fusion, and an asymmetric action encoder–decoder to inject environmental dynamics before action execution, achieving real-time closed-loop action correction and enhancing the system’s adaptability in dynamic scenarios. In dynamic PushT simulations, DCDP improves adaptability by 19\% without retraining while requiring only 5\% additional computation. Its modular design enables plug-and-play integration, achieving both temporal coherence and real-time responsiveness in dynamic robotic scenarios, including real-world manipulation tasks.
Submission Number: 19
Loading