Abstract: While advances in deep learning have enabled novel applications in various fields, face recognition in open-set scenarios remains a complex task, owing to the challenges posed by the extensive volume of low-quality face images. We introduce a new approach for recognizing faces in unconstrained open-set settings by leveraging uncertainty-aware embeddings through contrastive learning. Our model, called UCFace, effectively regulates the contribution of each face image based on the face uncertainty derived from image quality as an inverse proxy. Face embeddings are reinterpreted as a probabilistic distribution within the embedding space, where the degree of sharpness (i.e., distribution concentration) reflects the underlying uncertainty and probability density is used as a similarity metric to facilitate contrastive learning. Experiments on a wide range of face datasets, including those with high, mixed, and real-world low-resolution face images, demonstrate that UCFace enhances open-set face recognition performance by integrating the aspect of uncertainty.
Loading