Boosting the Cycle Counting Power of Graph Neural Networks with I$^2$-GNNsDownload PDF

Published: 01 Feb 2023, Last Modified: 12 Mar 2024ICLR 2023 posterReaders: Everyone
Keywords: Graph neural networks
Abstract: Message Passing Neural Networks (MPNNs) are a widely used class of Graph Neural Networks (GNNs). The limited representational power of MPNNs inspires the study of provably powerful GNN architectures. However, knowing one model is more powerful than another gives little insight about what functions they can or cannot express. It is still unclear whether these models are able to approximate specific functions such as counting certain graph substructures, which is essential for applications in biology, chemistry and social network analysis. Motivated by this, we propose to study the counting power of Subgraph MPNNs, a recent and popular class of powerful GNN models that extract rooted subgraphs for each node, assign the root node a unique identifier and encode the root node's representation within its rooted subgraph. Specifically, we prove that Subgraph MPNNs fail to count more-than-4-cycles at node level, implying that node representations cannot correctly encode the surrounding substructures like ring systems with more than four atoms. To overcome this limitation, we propose I$^2$-GNNs to extend Subgraph MPNNs by assigning different identifiers for the root node and its neighbors in each subgraph. I$^2$-GNNs' discriminative power is shown to be strictly stronger than Subgraph MPNNs and partially stronger than the 3-WL test. More importantly, I$^2$-GNNs are proven capable of counting all 3, 4, 5 and 6-cycles, covering common substructures like benzene rings in organic chemistry, while still keeping linear complexity. To the best of our knowledge, it is the first linear-time GNN model that can count 6-cycles with theoretical guarantees. We validate its counting power in cycle counting tasks and demonstrate its competitive performance in molecular prediction benchmarks.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
Supplementary Material: zip
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](https://www.catalyzex.com/paper/arxiv:2210.13978/code)
20 Replies

Loading