Coupled Multiwavelet Operator Learning for Coupled Differential EquationsDownload PDF

Published: 01 Feb 2023, 19:23, Last Modified: 01 Mar 2023, 09:09ICLR 2023 posterReaders: Everyone
Keywords: Neural operators, coupled differential equations, multiwavelet transform, partial differential equations
TL;DR: We propose a novel coupled multiwavelet operator learning scheme for efficiently solving coupled differential equations.
Abstract: Coupled partial differential equations (PDEs) are key tasks in modeling the complex dynamics of many physical processes. Recently, neural operators have shown the ability to solve PDEs by learning the integral kernel directly in Fourier/Wavelet space, so the difficulty of solving the coupled PDEs depends on dealing with the coupled mappings between the functions. Towards this end, we propose a \textit{coupled multiwavelets neural operator} (CMWNO) learning scheme by decoupling the coupled integral kernels during the multiwavelet decomposition and reconstruction procedures in the Wavelet space. The proposed model achieves significantly higher accuracy compared to previous learning-based solvers in solving the coupled PDEs including Gray-Scott (GS) equations and the non-local mean field game (MFG) problem. According to our experimental results, the proposed model exhibits a $2X-4X$ improvement relative $L$2 error compared to the best results from the state-of-the-art models.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Supplementary Material: zip
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Machine Learning for Sciences (eg biology, physics, health sciences, social sciences, climate/sustainability )
14 Replies