Towards Aligned Layout Generation via Diffusion Model with Aesthetic Constraints

Published: 16 Jan 2024, Last Modified: 13 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Diffusion model, Layout generation, Constrained Optimization
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: Unified model for layout generation using constrained diffusion.
Abstract: Controllable layout generation refers to the process of creating a plausible visual arrangement of elements within a graphic design (*e.g.*, document and web designs) with constraints representing design intentions. Although recent diffusion-based models have achieved state-of-the-art FID scores, they tend to exhibit more pronounced misalignment compared to earlier transformer-based models. In this work, we propose the **LA**yout **C**onstraint diffusion mod**E**l (LACE), a unified model to handle a broad range of layout generation tasks, such as arranging elements with specified attributes and refining or completing a coarse layout design. The model is based on continuous diffusion models. Compared with existing methods that use discrete diffusion models, continuous state-space design can enable the incorporation of continuous aesthetic constraint functions in training more naturally. For conditional generation, we propose injecting layout conditions in the form of masks or gradient guidance during inference. Empirical results show that LACE produces high-quality layouts and outperforms existing state-of-the-art baselines. We will release our source code and model checkpoints.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: pdf
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: generative models
Submission Number: 6682
Loading