ODAM: Gradient-based Instance-Specific Visual Explanations for Object DetectionDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Apr 2023ICLR 2023 posterReaders: Everyone
Keywords: instance-specific visual explanation, object detection
TL;DR: ODAM: a gradient-based instance-specific explanation technique for object detectors; ODAM-Train: improve the explanation ability on object discrimination; ODAM-NMS: distinguish the duplicate detected objects with the help of ODAM.
Abstract: We propose the Gradient-weighted Object Detector Activation Mapping (Grad-ODAM), a visualized explanation technique for interpreting the predictions of object detectors. Utilizing the gradients of detector targets flowing into the intermediate feature maps, Grad-ODAM produces heat maps that show the influence of regions on the detector's decision. Compared to previous classification activation mapping works, Grad-ODAM generates instance-specific explanations rather than class-specific ones. We show that Grad-ODAM is applicable to both one-stage detectors such as FCOS and two-stage detectors such as Faster R-CNN, and produces higher-quality visual explanations than the state-of-the-art both effectively and efficiently. We next propose a training scheme, ODAM-Train, to improve the explanation ability on object discrimination of the detector through encouraging consistency between explanations for detections on the same object, and distinct explanations for detections on different objects. Based on the heat maps produced by Grad-ODAM with ODAM-Train, we propose ODAM-NMS, which considers the information of the model's explanation for each prediction to distinguish the duplicate detected objects. We present a detailed analysis of the visualized explanations of detectors and carry out extensive experiments to validate the effectiveness of the proposed ODAM.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
33 Replies

Loading