DiffDock: Diffusion Steps, Twists, and Turns for Molecular DockingDownload PDF

Published: 01 Feb 2023, Last Modified: 22 Dec 2024ICLR 2023 posterReaders: Everyone
Keywords: molecular docking, protein-ligand binding, diffusion models, score-based models, molecular structure, equivariance, geometric deep learning
TL;DR: Molecular docking via non-Euclidean diffusion modeling and confidence estimation
Abstract: Predicting the binding structure of a small molecule ligand to a protein---a task known as molecular docking---is critical to drug design. Recent deep learning methods that treat docking as a regression problem have decreased runtime compared to traditional search-based methods but have yet to offer substantial improvements in accuracy. We instead frame molecular docking as a generative modeling problem and develop DiffDock, a diffusion generative model over the non-Euclidean manifold of ligand poses. To do so, we map this manifold to the product space of the degrees of freedom (translational, rotational, and torsional) involved in docking and develop an efficient diffusion process on this space. Empirically, DiffDock obtains a 38% top-1 success rate (RMSD<2A) on PDBBind, significantly outperforming the previous state-of-the-art of traditional docking (23%) and deep learning (20%) methods. Moreover, while previous methods are not able to dock on computationally folded structures (maximum accuracy 10.4%), DiffDock maintains significantly higher precision (21.7%). Finally, DiffDock has fast inference times and provides confidence estimates with high selective accuracy.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Machine Learning for Sciences (eg biology, physics, health sciences, social sciences, climate/sustainability )
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 5 code implementations](https://www.catalyzex.com/paper/diffdock-diffusion-steps-twists-and-turns-for/code)
23 Replies

Loading