DynamicsDiffusion: Generating and Rare Event Sampling of Molecular Dynamic Trajectories Using Diffusion Models

23 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Supplementary Material: zip
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Diffusion Models, DDPM, Molecular Dynamics, Physics
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We propose a DDPM-based method, "DynamicsDiffusion," to generate molecular dynamics trajectories, offering enhanced sampling of rare events and representing the first deep generative approach for these trajectories rather than just conformations.
Abstract: Molecular dynamics simulations are fundamental tools for quantitative molecular sciences. However, these simulations are computationally demanding and often struggle to sample rare events crucial for understanding spontaneous organization and reconfiguration in complex systems. To improve general speed and the ability to sample rare events in a directed fashion, we propose a method called $\textit{DynamicsDiffusion}$ based on denoising diffusion probabilistic models (DDPM) to generate molecular dynamics trajectories from noise. The generative model can then serve as a surrogate to sample rare events. We leverage the properties of DDPMs, such as conditional generation, the ability to generate variations of trajectories, and those with certain conditions, such as crossing from one state to another, using the 'inpainting' property of DDPMs, which became only applicable when generating whole trajectories and not just individual conformations. To our knowledge, this is the first deep generative modeling for generating molecular dynamics trajectories. We hope this work will motivate a new generation of generative modeling for the study of molecular dynamics.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8263
Loading