The Zipfian Challenge: Learning the statistical fingerprint of natural languages

Published: 07 Dec 2023, Last Modified: 21 Jun 2024CoNLLEveryoneCC BY-SA 4.0
Abstract: Human languages are often claimed to fundamentally differ from other communication systems. But what is it exactly that unites them as a separate category? This article proposes to approach this problem – here termed the Zipfian Challenge – as a standard classification task. A corpus with textual material from diverse writing systems and languages, as well as other symbolic and non-symbolic systems, is provided. These are subsequently used to train and test binary classification algorithms, assigning labels “writing” and “non-writing” to character strings of the test sets. The performance is generally high, reaching 98% accuracy for the best algorithms. Human languages emerge to have a statistical fingerprint: large unit inventories, high entropy, and few repetitions of adjacent units. This fingerprint can be used to tease them apart from other symbolic and non-symbolic systems.
Loading