Catastrophic Cyber Capabilities Benchmark (3CB): Robustly Evaluating LLM Agent Cyber Offense Capabilities
Keywords: AI Safety, AI Evaluations
TL;DR: We assess AI models' cyber offense capabilities with a benchmark of challenges based on the ATT&CK taxonomy, and find that current LLMs are potent but imperfect cyber actors.
Abstract: LLM agents have the potential to revolutionize defensive cyber operations, but their offensive capabilities are not yet fully understood. To prepare for emerging threats, model developers and governments are evaluating the cyber capabilities of foundation models. However, these assessments often lack transparency and a comprehensive focus on offensive capabilities. In response, we introduce the Catastrophic Cyber Capabilities Benchmark (3CB), a novel framework designed to rigorously assess the real-world offensive capabilities of LLM agents. Our evaluation of modern LLMs on 3CB reveals that frontier models, such as GPT-4o and Claude 3.5 Sonnet, can perform offensive tasks such as reconnaissance and exploitation across domains ranging from binary analysis to web technologies. Conversely, smaller open-source models exhibit limited offensive capabilities. Our software solution and the corresponding benchmark provides a critical tool to reduce the gap between rapidly improving capabilities and robustness of cyber offense evaluations, aiding in the safer deployment and regulation of these powerful technologies.
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 12152
Loading