CLIMS++: Cross Language Image Matching with Automatic Context Discovery for Weakly Supervised Semantic Segmentation

Published: 01 Jan 2025, Last Modified: 04 Nov 2025Int. J. Comput. Vis. 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: While promising results have been achieved in weakly-supervised semantic segmentation (WSSS), limited supervision from image-level tags inevitably induces discriminative reliance and spurious relations between target classes and background regions. Thus, Class Activation Map (CAM) usually tends to activate discriminative object regions and falsely includes lots of class-related backgrounds. Without pixel-level supervisions, it could be very difficult to enlarge the foreground activation and suppress those false activation of background regions. In this paper, we propose a novel framework of Cross Language Image Matching with Automatic Context Discovery (CLIMS++), based on the recently introduced Contrastive Language-Image Pre-training (CLIP) model, for WSSS. The core idea of our framework is to introduce natural language supervision to activate more complete object regions and suppress class-related background regions in CAM. In particular, we design object, background region, and text label matching losses to guide the model to excite more reasonable object regions of each category. In addition, we propose to automatically find spurious relations between foreground categories and backgrounds, through which a background suppression loss is designed to suppress the activation of class-related backgrounds. The above designs enable the proposed CLIMS++ to generate a more complete and compact activation map for the target objects. Extensive experiments on PASCAL VOC 2012 and MS COCO 2014 datasets show that our CLIMS++ significantly outperforms the previous state-of-the-art methods.
Loading