Keywords: Reinforcement Learning, Identifiability, Individualization
Abstract: The application of reinforcement learning (RL) involving interactions with individuals has grown significantly in recent years. These interactions, influenced by factors such as personal preferences and physiological differences, causally influence state transitions, ranging from health conditions in healthcare to learning progress in education. As a result, different individuals may exhibit different state-transition processes. Understanding individualized state-transition processes is essential for optimizing individualized policies. In practice, however, identifying these state-transition processes is challenging, as individual-specific factors often remain latent. In this paper, we establish the identifiability of these latent factors and introduce a practical method that effectively learns these processes from observed state-action trajectories. Experiments on various datasets show that the proposed method can effectively identify latent state-transition processes and facilitate the learning of individualized RL policies.
Primary Area: Reinforcement learning
Submission Number: 12027
Loading