StringLLM: Understanding the String Processing Capability of Large Language Models

Published: 22 Jan 2025, Last Modified: 14 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Large Language Models, String Processing, Benchmarks, Datasets
TL;DR: The first comprehensive study to understand the string processing capability of Large Language Models.
Abstract: String processing, which mainly involves the analysis and manipulation of strings, is a fundamental component of modern computing. Despite the significant advancements of large language models (LLMs) in various natural language processing (NLP) tasks, their capability in string processing remains underexplored and underdeveloped. To bridge this gap, we present a comprehensive study of LLMs' string processing capability. In particular, we first propose StringLLM, a method to construct datasets for benchmarking string processing capability of LLMs. We use StringLLM to build a series of datasets, referred to as StringBench. It encompasses a wide range of string processing tasks, allowing us to systematically evaluate LLMs' performance in this area. Our evaluations indicate that LLMs struggle with accurately processing strings compared to humans. To uncover the underlying reasons for this limitation, we conduct an in-depth analysis and subsequently propose an effective approach that significantly enhances LLMs' string processing capability via fine-tuning. This work provides a foundation for future research to understand LLMs' string processing capability. Our code and data are available at https://github.com/wxl-lxw/StringLLM.
Primary Area: datasets and benchmarks
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5778
Loading