DLR: Adversarial examples detection and label recovery for deep neural networks

Published: 01 Jan 2025, Last Modified: 25 Jan 2025Pattern Recognit. Lett. 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Highlights•We propose DLR to recover ground-truth labels of detected adversarial examples.•We analyze the potential of separate modules for legitimate and adversarial examples.•We analyze adversarial robustness of a multi-class autoencoder-based classifier.
Loading