MCA-LLaVA: Manhattan Causal Attention for Reducing Hallucination in Large Vision-Language Models

Published: 14 Jul 2025, Last Modified: 16 Sept 2025OpenReview Archive Direct UploadEveryoneRevisionsCC BY-NC 4.0
Abstract: Hallucinations pose a significant challenge in Large Vision Language Models (LVLMs), with misalignment between multimodal features identified as a key contributing factor. This paper reveals the negative impact of the long-term decay in Rotary Position Encoding (RoPE), used for positional modeling in LVLMs, on multimodal alignment. Concretely, under long-term decay, instruction tokens exhibit uneven perception of image tokens located at different positions within the two-dimensional space: prioritizing image tokens from the bottom-right region since in the one-dimensional sequence, these tokens are positionally closer to the instruction tokens. This biased perception leads to insufficient image-instruction interaction and suboptimal multimodal alignment. We refer to this phenomenon as “image alignment bias.” To enhance instruction's perception of image tokens at different spatial locations, we propose MCA-LLaVA, based on Manhattan distance, which extends the long-term decay to a two-dimensional, multi-directional spatial decay. MCA-LLaVA integrates the one-dimensional sequence order and two-dimensional spatial position of image tokens for positional modeling, mitigating hallucinations by alleviating image alignment bias. Experimental results of MCA-LLaVA across various hallucination and general benchmarks demonstrate its effectiveness and generality.
Loading