Boosting Event Stream Super-Resolution with A Recurrent Neural NetworkOpen Website

02 Nov 2022OpenReview Archive Direct UploadReaders: Everyone
Abstract: Existing methods for event stream super-resolution (SR) either require high-quality and high-resolution frames or underperform for large factor SR. To address these problems, we propose a recurrent neural network for event SR without frames. First, we design a temporal propagation net for incorporating neighboring and long-range event-aware contexts that facilitates event SR. Second, we build a spatiotemporal fusion net for reliably aggregating the spatiotemporal clues of event stream. These two elaborate components are tightly synergized for achieving satisfying event SR results even for 16× SR. Synthetic and real-world experimental results demonstrate the clear superiority of our method. Furthermore, we evaluate our method on two downstream event-driven applications, i.e., object recognition and video reconstruction, achieving remarkable performance boost over existing methods.
0 Replies

Loading