Keywords: singing voice conversion, zero-shot, feature disentanglement
TL;DR: We proposes a zero-shot high quality singing voice conversion method, where we improve the feature disentanglement by enhancing the timbre features and experiment various content representation methods to reduce the timbre leakage.
Abstract: Singing voice conversion (SVC) aims to convert a singer's voice to another singer's from a reference audio while keeping the original semantics. However, existing SVC methods can hardly perform zero-shot due to incomplete feature disentanglement or dependence on the speaker look-up table. We propose the first open-source high-quality zero-shot SVC model SaMoye that can convert singing to human and non-human timbre. SaMoye disentangles the singing voice's features into content, timbre, and pitch features, where we combine multiple ASR models and compress the content features to reduce timbre leakages. Besides, we enhance the timbre features by unfreezing the speaker encoder and mixing the speaker embedding with top-3 similar speakers. We also establish an unparalleled large-scale dataset to guarantee zero-shot performance, which comprises more than 1,815 hours of pure singing voice and 6,367 speakers. We conduct objective and subjective experiments to find that SaMoye outperforms other models in zero-shot SVC tasks even under extreme conditions like converting singing to animals' timbre.
Supplementary Material: zip
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 349
Loading