Learning and aligning single-neuron invariance manifolds in visual cortex

ICLR 2025 Conference Submission8146 Authors

Published: 22 Jan 2025, Last Modified: 22 Jan 2025ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: neural invariances, invariance manifold, MEI, implicit neural representations, contrastive learning, invariance alignment, clustering, visual cortex, macaque V1, primary visual cortex
TL;DR: Our method learns single-neuron invariances and aligns them, enabling population-level exploration of neural invariances.
Abstract: Understanding how sensory neurons exhibit selectivity to certain features and invariance to others is central to uncovering the computational principles underlying robustness and generalization in visual perception. Most existing methods for characterizing selectivity and invariance identify single or finite discrete sets of stimuli. Since these are only isolated measurements from an underlying continuous manifold, characterizing invariance properties accurately and comparing them across neurons with varying receptive field size, position, and orientation, becomes challenging. Consequently, a systematic analysis of invariance types at the population level remains under-explored. Building on recent advances in learning continuous invariance manifolds, we introduce a novel method to accurately identify and align invariance manifolds of visual sensory neurons, overcoming these challenges. Our approach first learns the continuous invariance manifold of stimuli that maximally excite a neuron modeled by a response-predicting deep neural network. It then learns an affine transformation on the pixel coordinates such that the same manifold activates another neuron as strongly as possible, effectively aligning their invariance manifolds spatially. This alignment provides a principled way to quantify and compare neuronal invariances irrespective of receptive field differences. Using simulated neurons, we demonstrate that our method accurately learns and aligns known invariance manifolds, robustly identifying functional clusters. When applied to macaque V1 neurons, it reveals functional clusters of neurons, including simple and complex cells. Overall, our method enables systematic, quantitative exploration of the neural invariance landscape, to gain new insights into the functional properties of visual sensory neurons.
Supplementary Material: zip
Primary Area: applications to neuroscience & cognitive science
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8146
Loading