Preference-based reinforcement learning: evolutionary direct policy search using a preference-based racing algorithmDownload PDFOpen Website

2014 (modified: 04 Nov 2022)Mach. Learn. 2014Readers: Everyone
Abstract: We introduce a novel approach to preference-based reinforcement learning, namely a preference-based variant of a direct policy search method based on evolutionary optimization. The core of our approach is a preference-based racing algorithm that selects the best among a given set of candidate policies with high probability. To this end, the algorithm operates on a suitable ordinal preference structure and only uses pairwise comparisons between sample rollouts of the policies. Embedding the racing algorithm in a rank-based evolutionary search procedure, we show that approximations of the so-called Smith set of optimal policies can be produced with certain theoretical guarantees. Apart from a formal performance and complexity analysis, we present first experimental studies showing that our approach performs well in practice.
0 Replies

Loading