Evaluating the Quality of Hallucination Benchmarks for Large Vision-Language Models

ICLR 2025 Conference Submission2057 Authors

20 Sept 2024 (modified: 28 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Large Vision-Language Models, Hallucination, Benchmark
Abstract: Despite the rapid progress and outstanding performance of Large Vision-Language Models (LVLMs) in recent years, LVLMs have been plagued by the issue of hallucination, i.e., LVLMs tend to generate responses that are inconsistent with the corresponding visual inputs. To evaluate the degree of hallucination in LVLMs, previous works have proposed a series of benchmarks featuring different types of tasks and evaluation metrics. However, we find that the quality of the existing hallucination benchmarks varies, with some suffering from problems, e.g., inconsistent evaluation results under repeated tests, and misalignment with human evaluation. To this end, we propose a Hallucination benchmark Quality Measurement framework (HQM), which leverages various indicators to assess the reliability and validity of existing hallucination benchmarks separately. Specifically, for reliability we explore test-retest reliability and parallel-forms reliability, while for validity we examine criterion validity and coverage of hallucination types. Furthermore, we construct a High-Quality Hallucination Benchmark (HQH) for LVLMs, which demonstrates superior reliability and validity under our HQM framework. We conduct an extensive evaluation of over 10 representative LVLMs, including GPT-4o and Gemini-1.5-Pro, to provide an in-depth analysis of the hallucination issues in existing models. Our benchmark is publicly available at https://github.com/HQHBench/HQHBench.
Supplementary Material: pdf
Primary Area: datasets and benchmarks
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2057
Loading