Leveraging Task Structures for Improved Identifiability in Neural Network Representations

17 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: multi-task learning, identifiability, representation learning, causality, molecules
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: An extension of the identifiability results in the multi-task setting in the presence of causal structures.
Abstract: This work extends the theory of identifiability in supervised learning by considering the consequences of having access to a distribution of tasks. In such cases, we show that identifiability is achievable even in the case of regression, extending prior work restricted to linear identifiability in the single-task classification case. Furthermore, we show that the existence of a task distribution which defines a conditional prior over latent factors reduces the equivalence class for identifiability to permutations and scaling, a much stronger and more useful result than linear identifiability. When we further assume a causal structure over these tasks, our approach enables simple maximum marginal likelihood optimization together with downstream applicability to causal representation learning. Empirically, we validate that our model outperforms more general unsupervised models in recovering canonical representations for both synthetic and real-world molecular data.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 970
Loading