Keywords: information retrieval, efficient retrieval, retrieval-agumented applications, RAG
TL;DR: Our paper presents a semi-parametric neural retrieval system that supports a non-parametric index to achieve efficiency and cost-effectiveness, meeting the growing demands of retrieval-augmented applications.
Abstract: Information retrieval has transitioned from standalone systems into essential components across broader applications, with indexing efficiency, cost-effectiveness, and freshness becoming increasingly critical yet often overlooked. In this paper, we introduce SemI-parametric Disentangled Retrieval (SiDR), a bi-encoder retrieval framework that decouples retrieval index from neural parameters to enable efficient, low-cost, and parameter-agnostic indexing for emerging use cases. Specifically, in addition to using embeddings as indexes like existing neural retrieval methods, SiDR supports a non-parametric tokenization index for search, achieving BM25-like indexing complexity with significantly better effectiveness. Our comprehensive evaluation across 16 retrieval benchmarks demonstrates that SiDR outperforms both neural and term-based retrieval baselines under the same indexing workload: (i) When using an embedding-based index, SiDR exceeds the performance of conventional neural retrievers while maintaining similar training complexity; (ii) When using a tokenization-based index, SiDR drastically reduces indexing cost and time, matching the complexity of traditional term-based retrieval, while consistently outperforming BM25 on all in-domain datasets; (iii) Additionally, we introduce a late parametric mechanism that matches BM25 index preparation time while outperforming other neural retrieval baselines in effectiveness.
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 13338
Loading