LoRA-XS: Low-Rank Adaptation with Extremely Small Number of Parameters

26 Sept 2024 (modified: 10 Dec 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: LoRA, large language models, parameter-efficiency, NLP, PEFT
TL;DR: We propose LoRA-XS: a novel PEFT method leveraging SVD, achieving >100x parameter reduction versus LoRA, and outperforming state-of-the-art methods in terms of parameter efficiency.
Abstract: The rapid expansion of large language models (LLMs) has underscored the need for parameter-efficient fine-tuning methods, with LoRA (Low-Rank Adaptation) emerging as a popular solution. Although LoRA reduces the number of trainable parameters, serving multiple (task or user-specific) LoRA modules on top of a base model still creates significant storage challenges. To address this, using theoretical derivation, we introduce LoRA-XS (Low-Rank Adaptation with eXtremely Small number of parameters), a novel low-rank adaptation method that considerably reduces the trainable parameters while showing superior or competitive performance. LoRA-XS achieves this by inserting a small, trainable $r \times r$ weight matrix between frozen low-rank matrices, which are constructed by Singular Value Decomposition (SVD) of the original weight matrix. This lightweight matrix enables fine-tuning with drastically reduced storage requirements, making it feasible to deploy millions of personalized models while minimizing memory overhead. For instance, LoRA-XS achieves a remarkable reduction of trainable parameters by over 100x in 7B models compared to LoRA. Our evaluations across various benchmarks (including GLUE, GSM8K, MATH, and eight commonsense reasoning datasets) demonstrate that LoRA-XS performs competitively or better than LoRA and other recent methods like VeRA while being significantly more parameter efficient. We also provide an extensive ablation study on the importance of singular vectors in transformer weights, shedding light on the underlying mechanisms driving LoRA-XS’s enhanced efficiency. These findings suggest that LoRA-XS is not only a storage-efficient alternative, but also a powerful tool for scaling and personalizing LLMs at unprecedented scales.
Primary Area: transfer learning, meta learning, and lifelong learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7792
Loading