Factored-NeuS: Reconstructing Surfaces, Illumination, and Materials of Possibly Glossy Objects

20 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: representation learning for computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Glossy surface, materials, illumination, diffuse, specular
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: This paper presents a progressive inverse rendering method that efficiently recovers scene surfaces, materials, and lighting from multi-view images, effectively handling specular reflections.
Abstract: We develop a method that recovers the surface, materials, and illumination of a scene from its posed multi-view images. In contrast to prior work, it does not require any additional data and can handle glossy objects or bright lighting. It is a progressive inverse rendering approach, which consists of three stages. In the first stage, we reconstruct the scene radiance and signed distance function (SDF) with a novel regularization strategy for specular reflections. Our approach considers both the diffuse and specular colors, which allows for handling complex view-dependent lighting effects for surface reconstruction. In the second stage, we distill light visibility and indirect illumination from the learned SDF and radiance field using learnable mapping functions. Finally, we design a method for estimating the ratio of incoming direct light reflected in a specular manner and use it to reconstruct the materials and direct illumination. Experimental results demonstrate that the proposed method outperforms the current state-of-the-art in recovering surfaces, materials, and lighting without relying on any additional data.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2644
Loading