Keywords: Large Language Models, Knowledge Cutoff, Model Hallucinations
TL;DR: This paper evaluates Large Language Models' knowledge of historical financial data, finding they know more about larger, recent companies but are also prone to hallucinations about these firms.
Abstract: Large Language Models (LLMs) are frequently utilized as sources of knowledge for question-answering. While it is known that LLMs may lack access to real-time data or newer data produced after the model's cutoff date, it is less clear how their knowledge spans across *historical* information. In this study, we assess the breadth of LLMs' knowledge using financial data of U.S. publicly traded companies by evaluating more than 197k questions and comparing model responses to factual data. We further explore the impact of company characteristics, such as size, retail investment, institutional attention, and readability of financial filings, on the accuracy of knowledge represented in LLMs. Our results reveal that LLMs are less informed about past financial performance, but they display a stronger awareness of larger companies and more recent information. Interestingly, at the same time, our analysis also reveals that LLMs are more likely to hallucinate for larger companies, especially for data from more recent years. The code, prompts, and model outputs are available on [GitHub](https://github.com/gtfintechlab/knowledge-gap).
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the COLM Code of Ethics on https://colmweb.org/CoE.html
Author Guide: I certify that this submission complies with the submission instructions as described on https://colmweb.org/AuthorGuide.html
Submission Number: 104
Loading