Abstract: Atlas selection and label fusion are two major challenges in multi-atlas segmentation. In this paper, we propose a novel deep fusion net for better solving these challenges. Deep fusion net is a deep architecture by concatenating a feature extraction subnet and a non-local patch-based label fusion (NL-PLF) subnet in a single network. This network is trained end-to-end for automatically learning deep features achieving optimal performance in a NL-PLF framework. The learned deep features are further utilized in defining a similarity measure for atlas selection. Experimental results on Cardiac MR images for left ventricular segmentation demonstrate that our approach is effective both in atlas selection and multi-atlas label fusion, and achieves state of the art in performance.
0 Replies
Loading