Abstract: Existing unsupervised outlier detection (OD) solutions face a grave challenge with surging visual data like images. Although deep neural networks (DNNs) prove successful for visual data, deep OD remains difficult due to OD's unsupervised nature. This paper proposes a novel framework named <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">E<inline-formula><tex-math notation="LaTeX">$^{3}$</tex-math><alternatives><mml:math><mml:msup><mml:mrow/><mml:mn>3</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="wang-ieq2-3188763.gif"/></alternatives></inline-formula>Outlier</i> that can perform <bold xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">e</b> ffective and <bold xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">e</b> nd-to- <bold xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">e</b> nd deep outlier removal. Its core idea is to introduce <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">self-supervision</i> into deep OD. Specifically, our major solution is to adopt a discriminative learning paradigm that creates multiple pseudo classes from given unlabeled data by various data operations, which enables us to apply prevalent discriminative DNNs (e.g., ResNet) to the unsupervised OD problem. Then, with theoretical and empirical demonstration, we argue that inlier priority, a property that encourages DNN to prioritize inliers during self-supervised learning, makes it possible to perform end-to-end OD. Meanwhile, unlike frequently-used outlierness measures (e.g., density, proximity) in previous OD methods, we explore network uncertainty and validate it as a highly effective outlierness measure, while two practical score refinement strategies are also designed to improve OD performance. Finally, in addition to the discriminative learning paradigm above, we also explore the solutions that exploit other learning paradigms (i.e., generative learning and contrastive learning) to introduce self-supervision for <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">E<inline-formula><tex-math notation="LaTeX">$^{3}$</tex-math><alternatives><mml:math><mml:msup><mml:mrow/><mml:mn>3</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="wang-ieq3-3188763.gif"/></alternatives></inline-formula>Outlier</i> . Such extendibility not only brings further performance gain on relatively difficult datasets, but also enables <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">E<inline-formula><tex-math notation="LaTeX">$^{3}$</tex-math><alternatives><mml:math><mml:msup><mml:mrow/><mml:mn>3</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="wang-ieq4-3188763.gif"/></alternatives></inline-formula>Outlier</i> to be applied to other OD applications like video abnormal event detection. Extensive experiments demonstrate that <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">E<inline-formula><tex-math notation="LaTeX">$^{3}$</tex-math><alternatives><mml:math><mml:msup><mml:mrow/><mml:mn>3</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="wang-ieq5-3188763.gif"/></alternatives></inline-formula>Outlier</i> can considerably outperform state-of-the-art counterparts by 10%-30% AUROC. Demo codes are available at <uri xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">https://github.com/demonzyj56/E3Outlier</uri> .
0 Replies
Loading