Keywords: Cell Nuclei Classification, Cell Nuclei Segmentation, Digital Pathology, MultiTask Learning, Deep Learning, Computational Efficiency
Abstract: Accurate detection and classification of cell nuclei in histopathological images are critical for both clinical diagnostics and large-scale digital pathology workflows. In this work, we introduce DualU-Net, a fully convolutional, multi-task architecture designed to streamline nuclei classification and segmentation. Unlike the widely adopted three-decoder paradigm of HoVer-Net, DualU-Net employs only two output heads: a segmentation decoder that predicts pixel-wise classification maps and a detection decoder that estimates Gaussian-based centroid density maps. By leveraging these two outputs, our model effectively reconstructs instance-level segmentations. The proposed architecture results in significantly faster inference, reducing processing time by up to x5 compared to HoVer-Net, while achieving classification and detection performance comparable to State-of-the-Art models. Additionally, our approach demonstrates greater computational efficiency than CellViT and NuLite. We further show that DualU-Net is more robust to staining variations, a common challenge in digital pathology workflows. The model has been successfully deployed in clinical settings as part of the DigiPatICS initiative, operating across eight hospitals within the Institut Català de la Salut (ICS) network, highlighting the practical viability of DualU-Net as an efficient and scalable solution for nuclei segmentation and classification in real-world pathology applications. The code and pretrained model weights are publicly available on https://github.com/davidanglada/DualU-Net.
Primary Subject Area: Segmentation
Secondary Subject Area: Application: Histopathology
Paper Type: Methodological Development
Registration Requirement: Yes
Reproducibility: https://github.com/davidanglada/DualU-Net
Visa & Travel: Yes
Midl Latex Submission Checklist: Ensure no LaTeX errors during compilation., Created a single midl25_NNN.zip file with midl25_NNN.tex, midl25_NNN.bib, all necessary figures and files., Includes \documentclass{midl}, \jmlryear{2025}, \jmlrworkshop, \jmlrvolume, \editors, and correct \bibliography command., Did not override options of the hyperref package, Did not use the times package., All authors and co-authors are correctly listed with proper spelling and avoid Unicode characters., Author and institution details are de-anonymized where needed. All author names, affiliations, and paper title are correctly spelled and capitalized in the biography section., References must use the .bib file. Did not override the bibliographystyle defined in midl.cls. Did not use \begin{thebibliography} directly to insert references., Tables and figures do not overflow margins; avoid using \scalebox; used \resizebox when needed., Included all necessary figures and removed *unused* files in the zip archive., Removed special formatting, visual annotations, and highlights used during rebuttal., All special characters in the paper and .bib file use LaTeX commands (e.g., \'e for é)., Appendices and supplementary material are included in the same PDF after references., Main paper does not exceed 9 pages; acknowledgements, references, and appendix start on page 10 or later.
Latex Code: zip
Copyright Form: pdf
Submission Number: 178
Loading