Improved Gradient Descent Optimization Algorithm based on Inverse Model-Parameter DifferenceDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: Deep learning, Neural Networks, Optimization algorithm, Adaptive learning-rate, Stochastic Gradient Descent
TL;DR: A new approach to gradient descent optimization in which learning-rate for each model-parameter is adjusted inversely proportional to the displacement of corresponding model-parameter from preceding iteration.
Abstract: A majority of deep learning models implement first-order optimization algorithms like the stochastic gradient descent (SGD) or its adaptive variants for training large neural networks. However, slow convergence due to complicated geometry of the loss function is one of the major challenges faced by the SGD. The currently popular optimization algorithms incorporate an accumulation of past gradients to improve the gradient descent convergence via either the accelerated gradient scheme (including Momentum, NAG, etc.) or the adaptive learning-rate scheme (including Adam, AdaGrad, etc.). Despite their general popularity, these algorithms often display suboptimal convergence owing to extreme scaling of the learning-rate due to the accumulation of past gradients. In this paper, a novel approach to gradient descent optimization is proposed which utilizes the difference in the model-parameter values from the preceding iterations to adjust the learning-rate of the algorithm. More specifically, the learning-rate for each model-parameter is adapted inversely proportional to the displacement of the model-parameter from the previous iterations. As the algorithm utilizes the displacement of model-parameters, poor convergence caused due to the accumulation of past gradients is avoided. A convergence analysis based on the regret bound approach is performed and the theoretical bounds for a stable convergence are determined. An Empirical analysis evaluates the proposed algorithm applied on the CIFAR 10/100 and the ImageNet datasets and compares it with the currently popular optimizers. The experimental results demonstrate that the proposed algorithm shows better performance than the popular optimization algorithms.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
5 Replies

Loading