Static Prediction of Runtime Errors by Learning to Execute Programs with External Resource DescriptionsDownload PDF

Published: 01 Feb 2023, Last Modified: 18 Feb 2023ICLR 2023 posterReaders: Everyone
Keywords: program analysis, graph neural networks, recurrent networks, attention mechanisms, source code, program execution
TL;DR: For statically predicting runtime errors, the IPA-GNN scales to complex programs, models exception handling, and executes resource descriptions; it performs well and surprisingly localizes errors despite training without location supervision.
Abstract: The execution behavior of a program often depends on external resources, such as program inputs or file contents, and so the program cannot be run in isolation. Nevertheless, software developers benefit from fast iteration loops where automated tools identify errors as early as possible, even before programs can be compiled and run. This presents an interesting machine learning challenge: can we predict runtime errors in a "static" setting, where program execution is not possible? Here, we introduce a competitive programming dataset and task for predicting runtime errors, which we show is difficult for generic models like Transformers. We approach this task by developing an interpreter-inspired architecture with an inductive bias towards mimicking program executions, which models exception handling and "learns to execute" descriptions of external resources. Surprisingly, we show that the model can also predict the locations of errors, despite being trained only on labels indicating error presence or absence and kind. In total, we present a practical and difficult-yet-approachable challenge problem related to learning program execution behavior and we demonstrate promising new capabilities of interpreter-inspired machine learning models for code.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Supplementary Material: zip
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Applications (eg, speech processing, computer vision, NLP)
8 Replies