Contrastive Sequential-Diffusion Learning: Non-Linear and Multi-Scene Instructional Video Synthesis

Published: 28 Feb 2025, Last Modified: 05 Mar 2025Winter Conference on Applications of Computer Vision 2025EveryoneCC BY-SA 4.0
Abstract: Generated video scenes for action-centric sequence descriptions such as recipe instructions and do-it-yourself projects often include non-linear patterns where the next video may need to be visually consistent not with the immediately preceding video but with earlier ones. Current multi-scene video synthesis approaches fail to meet these consistency requirements. To address this we propose a contrastive sequential video diffusion method that selects the most suitable previously generated scene to guide and condition the denoising process of the next scene. The result is a multi-scene video that is grounded in the scene descriptions and coherent w.r.t. the scenes that require visual consistency. Experiments with action-centered data from the real world demonstrate the practicality and improved consistency of our model compared to previous work.
Loading