Model Editing as a Robust and Denoised variant of DPO: A Case Study on Toxicity

ICLR 2025 Conference Submission13296 Authors

28 Sept 2024 (modified: 23 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: model editing, mechanistic interpretability, ai safety, alignment, toxicity, llms
TL;DR: We present model editing based sample-efficient and noise robust replacement to DPO, for reducing model toxicity.
Abstract: Recent alignment algorithms such as direct preference optimization (DPO) have been developed to improve the safety of large language models (LLMs) by training these models to match human behaviors exemplified by preference data. However, these methods are both computationally intensive and lacking in controllability and transparency, inhibiting their widespread use. Furthermore, these tuning-based methods require large-scale preference data for training and are susceptible to noisy preference data. In this paper, we introduce a tuning-free alignment alternative, ProFS (Projection Filter for Subspaces), and demonstrate its effectiveness under the use case of toxicity reduction. Grounded on theory from factor analysis, ProFS is a sample-efficient model editing approach that identifies a toxic subspace in the model parameter space and reduces model toxicity by projecting away the detected subspace. The toxic subspace is identified by extracting preference data embeddings from the language model, and removing non-toxic information from these embeddings. We show that ProFS is more sample-efficient than DPO, further showcasing greater robustness to noisy data. Finally, we attempt to connect tuning based alignment with editing, by establishing both theoretical and empirical connections between ProFS and DPO, showing that ProFS can be interpreted as a denoised version of a single DPO step.
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 13296
Loading