DCT-CryptoNets: Scaling Private Inference in the Frequency Domain

Published: 22 Jan 2025, Last Modified: 25 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: homomorphic encryption, deep neural networks, privacy-preserving machine learning, frequency-domain learning
TL;DR: DCT-CryptoNets improves the latency, precision and scalability of fully homomorphic encryption neural networks (FHENN's) by learning perceptually salient low-frequency information.
Abstract: The convergence of fully homomorphic encryption (FHE) and machine learning offers unprecedented opportunities for private inference of sensitive data. FHE enables computation directly on encrypted data, safeguarding the entire machine learning pipeline, including data and model confidentiality. However, existing FHE-based implementations for deep neural networks face significant challenges in computational cost, latency, and scalability, limiting their practical deployment. This paper introduces DCT-CryptoNets, a novel approach that operates directly in the frequency-domain to reduce the burden of computationally expensive non-linear activations and homomorphic bootstrap operations during private inference. It does so by utilizing the discrete cosine transform (DCT), commonly employed in JPEG encoding, which has inherent compatibility with remote computing services where images are generally stored and transmitted in this encoded format. DCT-CryptoNets demonstrates a substantial latency reductions of up to 5.3$\times$ compared to prior work on benchmark image classification tasks. Notably, it demonstrates inference on the ImageNet dataset within 2.5 hours (down from 12.5 hours on equivalent 96-thread compute resources). Furthermore, by *learning* perceptually salient low-frequency information DCT-CryptoNets improves the reliability of encrypted predictions compared to RGB-based networks by reducing error accumulating homomorphic bootstrap operations. DCT-CryptoNets also demonstrates superior scalability to RGB-based networks by further reducing computational cost as image size increases. This study demonstrates a promising avenue for achieving efficient and practical private inference of deep learning models on high resolution images seen in real-world applications.
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3265
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview