Node2ket: Efficient High-Dimensional Network Embedding in Quantum Hilbert Space

Published: 16 Jan 2024, Last Modified: 21 Apr 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: high-dimensional network embedding, quantum mechanics
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Network embedding (NE) is a prominent technique for network analysis where the nodes are represented as vectorized embeddings in a continuous space. Existing works tend to resort to the low-dimensional embedding space for efficiency and less risk of over-fitting. In this paper, we explore a new NE paradigm whose embedding dimension goes exponentially high w.r.t. the number of parameters, yet being very efficient and effective. Specifically, the node embeddings are represented as product states that lie in a super high-dimensional (e.g. $2^{32}$-dim) quantum Hilbert space, with a carefully designed optimization approach to guarantee the robustness to work in different scenarios. In the experiments, we show diverse virtues of our methods, including but not limited to: the overwhelming performance on downstream tasks against conventional low-dimensional NE baselines with the similar amount of computing resources, the super high efficiency for a fixed low embedding dimension (e.g. 512) with less than 1/200 memory usage, the robustness when equipped with different objectives and sampling strategies as a fundamental tool for future NE research. As a relatively unexplored topic in literature, the high-dimensional NE paradigm is demonstrated effective both experimentally and theoretically.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: pdf
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: representation learning for computer vision, audio, language, and other modalities
Submission Number: 5870
Loading