A Unified Causal View of Instruction Tuning

23 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: representation learning for computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: causal representation learning, identifiability analysis, instruction tuning
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Instruction tuning on a mixture of tasks has improved zero-shot capabilities in natural language processing (NLP). Nevertheless, existing methods often learn features that exhibit correlations between instruction-formatted samples and target labels, rather than causal relationships. Termed as "spurious correlation'' in statistics, such a correlation may change drastically in a new task, making the effect from the learned features to be misleading. To this end, we develop a meta Structural Causal Model (meta-SCM) to integrate different NLP tasks under a single causal structure of the data. Specifically, the meta-SCM introduces multiple latent factors that represent properties of source context language, only some of which causally influence the target labels for a specific task. The key idea is to learn task-required causal factors and only use those to make predictions for a given task. Theoretically, we prove the causal factor can be identified without mixing information from others. Guided by the identifiability, we propose a Structural Instruction Tuning (SIT) method to learn the task-required causal representations that can mimic the causal factors for each task. The utility of our approach is verified by improvements of zero-shot ability on a range of unseen datasets and tasks.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: pdf
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7229
Loading