Complexity of Proximal Augmented Lagrangian for Nonconvex Optimization with Nonlinear Equality Constraints
Abstract: We analyze worst-case complexity of a Proximal augmented Lagrangian (Proximal AL) framework for nonconvex optimization with nonlinear equality constraints. When an approximate first-order (second-order) optimal point is obtained in the subproblem, an \(\epsilon \) first-order (second-order) optimal point for the original problem can be guaranteed within \({\mathcal {O}}(1/ \epsilon ^{2 - \eta })\) outer iterations (where \(\eta \) is a user-defined parameter with \(\eta \in [0,2]\) for the first-order result and \(\eta \in [1,2]\) for the second-order result) when the proximal term coefficient \(\beta \) and penalty parameter \(\rho \) satisfy \(\beta = {\mathcal {O}}(\epsilon ^\eta )\) and \(\rho = \varOmega (1/\epsilon ^\eta )\), respectively. We also investigate the total iteration complexity and operation complexity when a Newton-conjugate-gradient algorithm is used to solve the subproblems. Finally, we discuss an adaptive scheme for determining a value of the parameter \(\rho \) that satisfies the requirements of the analysis.
Loading