Robustness of Unsupervised Representation Learning without LabelsDownload PDF

Published: 01 Feb 2023, Last Modified: 14 Jul 2024Submitted to ICLR 2023Readers: Everyone
Keywords: robustness, representation learning
TL;DR: We provide a framework for robustness evaluation and adversarial training of representation encoders without the need for labelled data.
Abstract: Unsupervised representation learning leverages large unlabeled datasets and is competitive with supervised learning. But non-robust encoders may affect downstream task robustness. Recently, robust representation encoders have become of interest. Still, all prior work evaluates robustness using a downstream classification task. Instead, we propose a family of unsupervised robustness measures, which are model- and task-agnostic and label-free. We benchmark state-of-the-art representation encoders and show that none dominates the rest. We offer unsupervised extensions to the FGSM and PGD attacks. When used in adversarial training, they improve most unsupervised robustness measures, including certified robustness. We validate our results against a linear probe and show that, for MOCOv2, adversarial training results in 3 times higher certified accuracy, a 2-fold decrease in impersonation attack success rate and considerable improvements in certified robustness.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Unsupervised and Self-supervised learning
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 5 code implementations](https://www.catalyzex.com/paper/robustness-of-unsupervised-representation/code)
12 Replies

Loading