Keywords: deep learning, reinforcement learning, meta learning, robustness
TL;DR: We propose an adversarial training regime for the meta-RL domain outperforming the straightforward training regime in many environments.
Abstract: Recent years have seen tremendous progress in methods of reinforcement learning. However, most of these approaches have been trained in a straightforward fashion and are generally not robust to adversity, especially in the meta-RL setting. To the best of our knowledge, our work is the first to propose an adversarial training regime for Multi-Task Reinforcement Learning, which requires no manual intervention or domain knowledge of the environments. Our experiments on multiple environments in the Multi-Task Reinforcement learning domain demonstrate that the adversarial process leads to a better exploration of numerous solutions and a deeper understanding of the environment. We also adapt existing measures of causal attribution to draw insights from the skills learned, facilitating easier re-purposing of skills for adaptation to unseen environments and tasks.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Reinforcement Learning (eg, decision and control, planning, hierarchical RL, robotics)
Supplementary Material: zip
Community Implementations: [ 2 code implementations](https://www.catalyzex.com/paper/rethinking-learning-dynamics-in-rl-using/code)
5 Replies
Loading