Abstract: Digital twin (DT) technology enables real-time simulation, prediction, and optimization of physical systems, but practical deployment faces challenges from high data requirements, proprietary data constraints, and limited adaptability to evolving conditions. This work introduces DDD-GenDT, a dynamic data-driven generative digital twin framework grounded in the Dynamic Data-Driven Application Systems (DDDAS) paradigm. The architecture comprises the Physical Twin Observation Graph (PTOG) to represent operational states, an Observation Window Extraction process to capture temporal sequences, a Data Preprocessing Pipeline for sensor structuring and filtering, and an LLM ensemble for zero-shot predictive inference. By leveraging generative AI, DDD-GenDT reduces reliance on extensive historical datasets, enabling DT construction in data-scarce settings while maintaining industrial data privacy. The DDDAS feedback mechanism allows the DT to autonomically adapt predictions to physical twin (PT) wear and degradation, supporting DT-aging, which ensures progressive synchronization of DT with PT evolution. The framework is validated using the NASA CNC milling dataset, with spindle current as the monitored variable. In a zero-shot setting, the GPT-4-based DT achieves an average RMSE of 0.479 A (4.79% of the 10 A spindle current), accurately modeling nonlinear process dynamics and PT aging without retraining. These results show that DDD-GenDT provides a generalizable, data-efficient, and adaptive DT modeling approach, bridging generative AI with the performance and reliability requirements of industrial DT applications.
External IDs:dblp:journals/corr/abs-2501-00051
Loading