Abstract: We extend metric learning by studying the Riemannian manifold structure of the underlying data space induced by dissimilarity measures between data points. The key quantity of interest here is the Riemannian metric, which characterizes the Riemannian geometry and defines straight lines and derivatives on the manifold. Being able to estimate the Riemannian metric allows us to gain insights into the underlying manifold and compute geometric features such as the geodesic curves. We model the observed dissimilarity measures as noisy responses generated from a function of the intrinsic geodesic distance between data points. A new local regression approach is proposed to learn the Riemannian metric tensor and its derivatives based on a Taylor expansion for the squared geodesic distances. Our framework is general and accommodates different types of responses, whether they are continuous, binary, or comparative, extending the existing works which consider a single type of response at a time. We develop theoretical foundation for our method by deriving the rates of convergence for the asymptotic bias and variance of the estimated metric tensor. The proposed method is shown to be versatile in simulation studies and a real data application involving taxi trip time in New York City.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Unsupervised and Self-supervised learning
10 Replies
Loading