Discrete Codebook World Models for Continuous Control

ICLR 2025 Conference Submission804 Authors

14 Sept 2024 (modified: 28 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: reinforcement learning, world model, representation learning, self-supervised learning, model-based reinforcement learning
TL;DR: World models with discrete codebook encodings are effective for continuous control
Abstract: In reinforcement learning (RL), world models serve as internal simulators, enabling agents to predict environment dynamics and future outcomes in order to make informed decisions. While previous approaches leveraging discrete latent spaces, such as DreamerV3, have achieved strong performance in discrete action environments, they are typically outperformed in continuous control tasks by models with continuous latent spaces, like TD-MPC2. This paper explores the use of discrete latent spaces for continuous control with world models. Specifically, we demonstrate that quantized discrete codebook encodings are more effective representations for continuous control, compared to alternative encodings, such as one-hot and label-based encodings. Based on these insights, we introduce DCWM: Discrete Codebook World Model, a model-based RL method which surpasses recent state-of-the-art algorithms, including TD-MPC2 and DreamerV3, on continuous control benchmarks.
Supplementary Material: zip
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 804
Loading