Abstract: This paper investigates the underlying mechanisms of toxicity generation in Large Language Models (LLMs) and proposes an effective detoxification approach. Prior work typically considers the Feed-Forward Network (FFN) as the main source of toxicity, representing toxic regions as a set of toxic vectors or layer-wise subspaces. However, our in-depth analysis reveals that the global toxic subspace offers a more effective and comprehensive representation of toxic region within the model. Building on this insight, we propose GloSS (Global Toxic Subspace Suppression), a lightweight, four-stage method that mitigates toxicity by identifying and removing the global toxic subspace from the parameters of FFN. Experiments across a range of LLMs show that GloSS achieves state-of-the-art detoxification performance while preserving the models general capabilities, without requiring large-scale data or model retraining.
External IDs:dblp:journals/corr/abs-2505-17078
Loading