Lightweight Unsupervised Federated Learning with Pretrained Vision Language Model

23 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: societal considerations including fairness, safety, privacy
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: unsupervised federated learning, vision-language model
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Federated learning aims to tackle the ``isolated data island" problem, where it trains a collective model from physically isolated clients while safeguarding the privacy of users' data. However, supervised federated learning necessitates that each client labels their data for training, which can be both time-consuming and resource-intensive, and may even be impractical for edge devices. Moreover, the training and transmission of deep models present challenges to the computation and communication capabilities of the clients. To address these two inherent challenges in supervised federated learning, we propose a novel lightweight unsupervised federated learning approach that leverages unlabeled data on each client to perform lightweight model training and communication by harnessing pretrained vision-language models, such as CLIP. By capitalizing on the zero-shot prediction capability and the well-trained image encoder of the pre-trained CLIP model, we have carefully crafted an efficient and resilient self-training approach. This method refines the initial zero-shot predicted pseudo-labels of unlabeled instances through the sole training of a linear classifier on top of the fixed image encoder. Additionally, to address data heterogeneity within each client, we propose a class-balanced text feature sampling strategy for generating synthetic instances in the feature space to support local training. Experiments are conducted on multiple benchmark datasets. The experimental results demonstrate that our proposed method greatly enhances model performance in comparison to CLIP's zero-shot predictions and even outperforms supervised federated learning benchmark methods given limited computational and communication overhead.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6655
Loading